An imaging-based tumour growth and treatment response model: investigating the effect of tumour oxygenation on radiation therapy response.

نویسندگان

  • Benjamin Titz
  • Robert Jeraj
چکیده

A multiscale tumour simulation model employing cell-line-specific biological parameters and functional information derived from pre-therapy PET/CT imaging data was developed to investigate effects of different oxygenation levels on the response to radiation therapy. For each tumour voxel, stochastic simulations were performed to model cellular growth and therapeutic response. Model parameters were fitted to published preclinical experiments of head and neck squamous cell carcinoma (HNSCC). Using the obtained parameters, the model was applied to a human HNSCC case to investigate effects of different uniform and non-uniform oxygenation levels and results were compared for treatment efficacy. Simulations of the preclinical studies showed excellent agreement with published data and underlined the model's ability to quantitatively reproduce tumour behaviour within experimental uncertainties. When using a simplified transformation to derive non-uniform oxygenation levels from molecular imaging data, simulations of the clinical case showed heterogeneous tumour response and variability in radioresistance with decreasing oxygen levels. Once clinically validated, this model could be used to transform patient-specific data into voxel-based biological objectives for treatment planning and to investigate biologically optimized dose prescriptions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploratory analysis of using supervised machine learning in [18F] FDG PET/CT images to predict treatment response in patients with metastatic and recurrent Brest tumors

Aim: Despite grate progress in treatments, breast cancer is still the most common invasive cancer and the most cause of cancer related death in women. Treatment could be improved and perhaps standardized if more reliable markers for tumour progression and poor prognosis could be developed. The aim of this study was to evaluate whether patient-based machine learning (ML) driven ...

متن کامل

Tumour radiobiology beyond fractionation

Historically it has been shown repeatedly that single high doses of radiation do not allow a therapeutic differential between tumor and critical normal tissues but dose fractionation does. The purpose of conventional dose fractionation is to increase dose to the tumor while preserving normal tissue function. Tumors are generally irradiated with 2Gy dose per fraction delivered daily to a more or...

متن کامل

In vivo imaging of cellular proliferation in renal cell carcinoma using 18F-fluorothymidine PET

Objective(s): The ability to measure cellular proliferation non-invasively in renal cell carcinoma may allow prediction of tumour aggressiveness and response to therapy. The aim of this study was to evaluate the uptake of 18Ffluorothymidine (FLT) PET in renal cell carcinoma (RCC), and to compare this to 18F-fluorodeoxyglucose (FDG), and to an immunohistochemical measure of cellular proliferatio...

متن کامل

Changing Therapeutic Paradigms: Predicting mCRC Lesion Response to Selective Internal Radionuclide Therapy (SIRT) based on Critical Absorbed Dose Thresholds: A Case Study

A 65 year old male with metastatic colorectal cancer (mCRC) in the liver was referred for selective internal radionuclide therapy (SIRT) following a history of extensive systemic chemotherapy. 90Y PET imaging was performed immediately after treatment and used to confirm lesion targeting and measure individual lesion absorbed doses. Lesion dosimetry was highly predictive of eventual response in ...

متن کامل

Spatio-Temporal Dynamics of Hypoxia during Radiotherapy

Tumour hypoxia plays a pivotal role in cancer therapy for most therapeutic approaches from radiotherapy to immunotherapy. The detailed and accurate knowledge of the oxygen distribution in a tumour is necessary in order to determine the right treatment strategy. Still, due to the limited spatial and temporal resolution of imaging methods as well as lacking fundamental understanding of internal o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 53 17  شماره 

صفحات  -

تاریخ انتشار 2008